Ahlfors-regular Curves in Metric Spaces

نویسنده

  • Raanan Schul
چکیده

We discuss 1-Ahlfors-regular connected sets in a general metric space and prove that such sets are ‘flat’ on most scales and in most locations. Our result is quantitative, and when combined with work of I. Hahlomaa, gives a characterization of 1-Ahlfors regular subsets of 1Ahlfors-regular curves in metric spaces. Our result is a generalization to the metric space setting of the Analyst’s (Geometric) Traveling Salesman theorems of P. Jones, K. Okikiolu, and G. David and S. Semmes, and it can be stated in terms of average Menger curvature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 05 45 4 v 1 [ m at h . M G ] 1 6 M ay 2 00 6 Ahlfors - Regular Curves In Metric Spaces

We discuss 1-Ahlfors-regular connected sets in a metric space. We prove that such a set is ‘flat’ on most scales and locations. We give a quantitative version of this. This, together with work of I. Hahlomaa, gives a characterization of 1-Ahlfors regular subsets of 1-Ahlfors-regular curves in a metric space, generalizing in a way the Analyst’s (Geometric) Traveling Salesman theorems by P. Jones...

متن کامل

Tangents and Rectifiability of Ahlfors Regular Lipschitz Differentiability Spaces

We study Lipschitz differentiability spaces, a class of metric measure spaces introduced by Cheeger in [8]. We show that if an Ahlfors regular Lipschitz differentiability space has charts of maximal dimension, then, at almost every point, all its tangents are uniformly rectifiable. In particular, at almost every point, such a space admits a tangent that is isometric to a finite-dimensional Bana...

متن کامل

Bmo on Spaces of Homogeneous Type: a Density Result on C-c Spaces

In the general setting of a space of homogeneous type endowed with an Ahlfors regular measure, we introduce the Banach spaces BMO and V MO defined through suitable cubes, and we prove that these spaces are topologically equivalent to the standard ones usually defined by means of balls. Through this fact we extend a known result of Sarason showing that C∞ is locally dense in V MO in the setting ...

متن کامل

Exceptional sets for quasiconformal mappings in general metric spaces

A theorem of Balogh, Koskela, and Rogovin states that in Ahlfors Q-regular metric spaces which support a p-Poincaré inequality, 1 ≤ p ≤ Q, an exceptional set of σ-finite (Q−p)-dimensional Hausdorff measure can be taken in the definition of a quasiconformal mapping while retaining Sobolev regularity analogous to that of the Euclidean setting. Through examples, we show that the assumption of a Po...

متن کامل

Mappings of Finite Distortion between Metric Measure Spaces

We establish the basic analytic properties of mappings of finite distortion between proper Ahlfors regular metric measure spaces that support a (1, 1)-Poincaré inequality. As applications, we prove that under certain integrability assumption for the distortion function, the branch set of a mapping of finite distortion between generalized n-manifolds of type A has zero Hausdorff n-measure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008